Das globale Windsystem

Rund um den Erdball strömen die Luftmassen der Atmosphäre: Sie steigen auf und sinken, treffen aufeinander und vermischen sich. Das geschieht allerdings nicht wild durcheinander, sondern die Winde folgen einem ganz bestimmten Muster. Beeinflusst wird dieses globale Windsystem (auch planetarische Zirkulation genannt) vor allem durch die Einstrahlung der Sonne und durch die Corioliskraft.

Die Kraft der Sonne treibt den Wind an
Quelle: Colourbox

Der unermüdliche Kreislauf der Luft beginnt am Äquator, wo ständig warme Luft aufsteigt. Am Boden bildet sich eine ganze Kette von Tiefdruckgebieten, die sogenannte äquatoriale Tiefdruckrinne. Die aufgestiegene Luft bewegt sich in großer Höhe in Richtung der Pole. Weil sie unterwegs abkühlt, sinkt sie in den Subtropen bei etwa 30° nördlicher und südlicher Breite wieder ab und strömt am Erdboden als Passatwind zurück in Richtung Äquator. Der gesamte Windkreislauf um den Äquator wurde schon 1753 von dem englischen Wissenschaftler George Hadley beschrieben und wird darum „Hadley-Zelle“ genannt. (Als „Zelle“ bezeichnen Meteorologen eine kreisförmige Luftströmung.)

Windig ist es oft an der Küste
Quelle: Colourbox

Auch rund um die Pole zirkulieren Luftmassen und bilden die beiden „polaren Zellen“: Weil am Pol kalte Luft zu Boden sinkt, entsteht an dieser Stelle ein Hochdruckgebiet. Von hier aus strömt am Boden kalte Luft in Richtung Äquator. Sobald sich diese Luftmasse ausreichend erwärmt hat, steigt sie wieder auf: Eine ganze Reihe von Tiefs entsteht rund um den 60. Breitengrad, die subpolare Tiefdruckrinne. Die Luft, die hier aufsteigt, fließt in der Höhe zurück zum Pol.

Am Äquator steigt heiße Luft auf
Quelle: Colourbox

Zwischen polarer Zelle und Hadley-Zelle, etwa zwischen dem 30. und 60. Breitengrad treffen sich die Luftmassen der Polargebiete und der Passatzone: Hier hat sich die dritte große Windzelle breit gemacht. Nach ihrem Entdecker, dem Amerikaner William Ferrel, heißt sie auch „Ferrel-Zelle“. Weil in dieser Region kalte und warme Luftmassen aufeinandertreffen, herrscht hier oft wechselhaftes und regenreiches Wetter, das wir in Mitteleuropa gut kennen. Der Wind kommt vorherrschend aus westlicher Richtung. Darum wird die Region zwischen 40. und 60. Breitengrad in Europa Westwindzone genannt. Auch in der Höhe kommt der Wind aus Westen: An der Grenze zur polaren Zelle fließen starke Höhenwinde, die durch die Corioliskraft gedreht und nach Osten gelenkt werden – die sogenannten Jetstreams.

Am Südpol herrscht Hochdruck – genau wie am Nordpol
Quelle: Colourbox

Auf jeder Halbkugel haben sich also drei große Windkreisläufe aufgebaut: die Hadley-Zelle, die Ferrel-Zelle und die polare Zelle. Warum es gerade drei sind, hängt mit der Geschwindigkeit der Erdrotation zusammen. Was passieren würde, wenn sich die Erde viel langsamer drehen würde, lässt sich mit dem Computer simulieren: Dann würde die warme Luft einfach am Äquator aufsteigen, abgekühlt am Pol wieder sinken und am Boden zurückfließen. Es gäbe auf jeder Hemisphäre nur eine große Windzelle. Je schneller man aber im Computermodell die Erde rotieren lässt, desto mehr Windzellen spalten sich ab. Bei der Simulation der tatsächlichen Drehgeschwindigkeit der Erde kommt auch der Computer zum Ergebnis: Es gibt auf jeder Halbkugel genau drei große Windzellen.

Luft ist ständig in Bewegung
Quelle: Colourbox

Wie entsteht Wind?

An der Küste weht oft ein frischer Wind. Bläst er besonders kräftig, ist auch von einer steifen Brise die Rede. Aber nicht nur am Meer – überall auf der Erde ist Luft in Bewegung. Nur an wenigen Orten der Erde weht nicht das leiseste Lüftchen, wie in der Kalmenzone am Äquator – benannt nach dem französischen Wort für Flaute: „calme“. Diese windstille Gegend war früher von Seefahrern gefürchtet, denn die Segelschiffe kamen dort wochenlang nicht vom Fleck. Doch woran liegt es, dass manchmal Flaute herrscht und manchmal ein heftiger Sturm übers Land fegt?

Am Strand ist es oft windig
Quelle: Colourbox

Wind entsteht vor allem durch die Kraft der Sonne. Wenn die Sonnenstrahlen den Erdboden aufheizen, erwärmt sich darüber auch die Luft. Die Warmluft dehnt sich aus und wird dadurch dünner und leichter: die Luftmasse steigt nach oben. In Bodennähe entsteht so Tiefdruck. Wo es kalt ist, sinkt die Luft dagegen ab und am Boden bildet sich Hochdruck. Um den Druckunterschied zwischen benachbarten Luftmassen auszugleichen, strömt kältere Luft dorthin, wo warme Luft aufsteigt. Das geschieht umso schneller, je größer der Temperaturunterschied zwischen den Luftschichten ist. So gerät die Luft in Aktion – es weht ein mehr oder weniger starker Wind.

Bei Flaute macht Segeln keinen Spaß
Quelle: Colourbox

Besonders gut lässt sich die Entstehung von Wind am Meer beobachten. Tagsüber erwärmt sich die Luft über dem Land schneller als über dem Wasser. Die warmen Luftmassen steigen nach oben und saugen die kühle und schwere Luft über der See an: Der Wind weht vom Meer zum Land. Nachts ändert der Wind seine Richtung. Weil das Wasser die Wärme länger speichert als das Land, ist auch die Luft darüber noch wärmer und steigt auf. Dann bläst der Wind vom Land zum Meer.

Die Kraft der Sonne …
Quelle: Colourbox
…versetzt die Luft in Bewegung
Quelle: Colourbox

Woher der Wind weht, wird immer mit der Himmelsrichtung angegeben. In unseren Breiten ist das oft aus westlicher Richtung, wir leben in der sogenannten Westwindzone. Die heißen Passatwinde wehen dagegen zuverlässig aus östlicher Richtung zum Äquator hin. Und die polaren Ostwinde transportieren eisige Luftmassen vom Pol zum Polarkreis.

Zum Kitesurfen braucht man natürlich Wind
Quelle: Colourbox
Woher weht der Wind?
Quelle: Colourbox

Was ist die Corioliskraft?

Flugzeuge, die von New York nach Frankfurt fliegen, haben ordentlich Rückenwind. Der Wind, der sie antreibt, bläst in etwa 10 Kilometern Höhe von West nach Ost. Jetstream heißt diese starke Luftströmung, die bis zu 500 km/h schnell sein kann. Ihre Richtung ist das Ergebnis der so genannten Corioliskraft.

Rückenwind für Flugzeuge: der Jetstream
Quelle: Colourbox

Sie ist benannt nach dem französischen Wissenschaftler Gaspard Gustave de Coriolis, der sie im Jahr 1835 als erster mathematisch untersuchte. Ursache für die Corioliskraft ist die Drehung der Erde um die eigene Achse: Am Äquator dreht sich die Erde mit 1670 Kilometern pro Stunde nach Osten, in Richtung der Pole nimmt die Geschwindigkeit immer weiter ab. Strömen Luftmassen vom Äquator zum Nordpol, nehmen sie den Schwung nach Osten mit und bewegen sich dann schneller als die Erdoberfläche. Von der Erdoberfläche aus betrachtet, sieht es so aus, dass sie von ihrem Nordkurs nach Osten – also nach rechts – abgelenkt werden. Umkehrt werden Luftmassen, die vom Pol zum Äquator strömen, von der Erdoberfläche überholt, werden also auf ihrem Südkurs nach Westen – ebenfalls nach rechts – abgelenkt.

An den Polen ist die Corioliskraft am größten
Quelle: Colourbox

Auf dem Weg zum Südpol sind die Richtungen umgekehrt: Luftmassen auf dem Weg zum Pol werden von ihrem Südkurs nach Osten, also nach links abgelenkt – ebenso wie die Luftmassen auf Nordkurs Richtung Äquator, die nach Westen abgelenkt werden. So führt also die Corioliskraft auf der Nordhalbkugel zu einer Rechtsablenkung, auf der Südhalbkugel zu einer Linksablenkung, und zwar um so stärker, je näher man den Polen kommt.

Hurrikans entstehen über tropischen Meeren
Quelle: Colourbox

Auf diese Weise beeinflusst die Corioliskraft das globale Windsystem, die großen Luftströmungen auf der Erde. Damit hat sie einen großen Einfluss auf das Wetter: In unseren Breiten zum Beispiel strömt die Luft Richtung Nordpol und wird daher nach Osten abgelenkt. Bei uns kommt der Wind also meistens aus Westen, vom Atlantik her und bringt deshalb eher feuchte Luft mit gemäßigten Temperaturen. Auch die Jetstreams verdanken ihre Richtung der Corioliskraft.

Cornwall in England: Mildes Klima durch den warmen Golfstrom
Quelle: Colourbox

Sogar tropische Wirbelstürme mit einigen 100 Kilometern Durchmesser entstehen mit Hilfe der Corioliskraft. Denn durch sie beginnt sich feuchtheiße Luft zu drehen bis sie zum zerstörerischen Wirbel heranwächst. Die Corioliskraft wirkt sich aber nicht nur auf große Luftmassen aus, sie lenkt auch Meeresströmungen ab. So ist es zu erklären, dass der warme Golfstrom auf dem Weg nach Norden nach rechts driftet und große Teile Nordeuropas beheizt.

Die Wirkung von Sonnenlicht

Im Inneren der Sonne ist es unvorstellbar heiß: Ganze 15 Millionen Grad herrschen hier. An der Oberfläche der Sonne sind es immerhin noch 5.600 Grad Celsius. Damit ist die Sonne weißglühend und erscheint unserem Auge als weiße Kugel.

Die Sonne strahlt Licht und Wärme in alle Richtungen
Quelle: Colourbox

Ohne die Sonne gäbe es kein Leben auf diesem Planeten, jedenfalls nicht so wie wir es heute kennen. Die Sonne ist eine gigantische Energiequelle, die Licht und Wärme ins Weltall strahlt. Ein Teil ihrer Strahlung erreicht auch die Erde. Diese Energie erwärmt unsere Atmosphäre, den Erdboden und die Meere.

Ihre Energie erreicht auch die Erde
Quelle: Colourbox

Am stärksten heizt die Sonne die Gegend um den Äquator auf, denn dort treffen ihre Strahlen senkrecht auf eine relativ kleine Fläche. Die Pole erreichen die Sonnenstrahlen dagegen in einem flacheren Winkel. Hier verteilt sich die Sonnenenergie daher auf eine größere Fläche; und in diesen Regionen bleibt es kühler. So sorgt die verschieden starke Sonneneinstrahlung für unterschiedliche Klimazonen. Auch Jahreszeiten und Wetter sind das Ergebnis von unterschiedlich starker Sonneneinstrahlung.

Am Nordpol verteilen sich die Sonnenstrahlen auf eine große Fläche
Quelle: Colourbox

Würde die Erde die gesamte Sonnenenergie speichern, wäre es hier in kürzester Zeit unerträglich heiß. Das ist schon an einem heißen Sommertag zu spüren, wenn die Temperatur nach Sonnenaufgang in kürzester Zeit auf 30 Grad Celsius klettert. Damit das Klima über Jahrhunderte stabil bleiben kann, muss die Erde etwa die gleiche Menge der gelieferten Sonnenenergie auch wieder loswerden.

Wo die Sonne scheint, wird es schnell warm
Quelle: Colourbox

Das geschieht durch die Strahlung der Erde ins All. Etwa ein Drittel der Sonnenenergie wird von Atmosphäre, Landfläche, Gewässern und Eismassen sofort zurückreflektiert. Den Rest an Energie nimmt die Erde zunächst in Form von Wärme auf. Diese Wärme gibt sie dann langsam und in alle Himmelsrichtungen wieder an den Weltraum ab.

Tag und Nacht gibt die Erde Wärme ab
Quelle: Colourbox

Passatwinde

Es gibt Gebiete auf der Erde, da bläst der Wind immer aus der gleichen Richtung. In den Tropen zum Beispiel – der Region um den Äquator – wehen Passatwinde aus östlicher Richtung. Früher nutzten Seefahrer diese Tatsache: Sie richteten die Routen ihrer Segelschiffe nach der Windrichtung. Mit Unterstützung des Ostwinds war eine sichere Überfahrt von Europa über den Atlantik nach Nordamerika möglich. Von dieser Überfahrt – auf italientisch „passata“ – erhielten die verlässlichen Winde auch ihren Namen: Passatwinde. Weil sie trockenheiße Luft transportieren, dörren sie den Boden aus. Im Bereich der Passatwinde liegen große Wüsten wie die Sahara im nördlichen und die Kalahari im südlichen Afrika, die australischen Wüsten oder die Atacama in Südamerika.

Große Segler richteten ihre Route nach den Passatwinden
Quelle: Colourbox

Ihren Ursprung haben die Passatwinde am Äquator. Dort treffen die Sonnenstrahlen senkrecht auf die Erde und heizen die Luft sehr stark auf. Die Luftmassen dehnen sich aus und steigen auf. Oben breiten sie sich in Richtung der Wendekreise aus. Weil die Luft auf dieser Reise abkühlt, sinkt sie nach einer Weile wieder nach unten und sorgt am Boden für Hochdruck. So bilden sich in etwa 30° nördlicher und südlicher Breite eine ganze Reihe von Hochdruckgebieten: der subtropische Hochdruckgürtel. Zu diesem subtropischen Hochdruckgürtel gehört zum Beispiel das Azorenhoch, das sich stark auf das Wetter in Europa auswirkt.

Von Passatwinden ausgedörrt: die Wüste Sahara
Quelle: Colourbox
Über den Azoren bildet sich regelmäßig ein Hochdruckgebiet – das Azorenhoch
Quelle: Colourbox

Am Äquator selbst sind durch die aufsteigenden Luftmassen Gebiete mit tiefem Luftdruck entstanden. Durch diesen Unterdruck werden Luftmassen vom subtropischen Hochdruckgürtel angesaugt, die Passatwinde. Diese wehen allerdings nicht direkt vom Hoch zum Tief, sondern werden durch die Corioliskraft abgelenkt. Darum weht der Passat auf der Nordhalbkugel immer aus Nordost, auf der Südhalbkugel aus Südost. Am Äquator treffen diese Passatwinde aufeinander. Durch die starke Sonneneinstrahlung steigt die Luft erneut nach oben, so dass es fast windstill ist. Hier schließt sich der Kreislauf der Passatwinde, die Teil eines globalen Windmusters sind.

Am Äquator treffen sich die Passatwinde…
Quelle: Colourbox

Weil der Stand der Sonne im Lauf eines Jahres wandert, verlagert sich auch der Ort der stärksten Sonneneinstrahlung. Dadurch verschiebt sich die ganze Passatzirkulation um einige Breitengrade zwischen Nord und Süd.

…die heiße Luft steigt auf.
Quelle: Colourbox

Was sind Klimazonen?

„Morgens ist es wechselnd bis stark bewölkt mit Schauern. Nachmittags zeigt sich die Sonne, bei Temperaturen zwischen 16 und 22 Grad“, so lautet vielleicht der Wetterbericht für Süddeutschland. Die Vorhersage ist für uns interessant, weil sich das Wetter ständig ändert. Anders verhält es sich mit dem Klima, denn das bleibt. Mit Klima ist das durchschnittliche Wetter einer Region über einen längeren Zeitraum gemeint. So ist beispielsweise das Klima am Äquator das ganze Jahr über heiß und feucht. Am Nordpol dagegen herrschen eisige Temperaturen und es gibt nur wenig Niederschlag. Zwischen dem Äquator und den Polen gibt es wiederum Gebiete, in denen es, wie bei uns, sehr wechselhaft sein kann. Doch woran liegt es, dass das Klima auf der Erde so unterschiedlich ist?

Wetter ändert sich, Klima bleibt
Quelle: Colourbox

Die Strahlung der Sonne ist nicht überall auf der Erde gleich stark. Wie intensiv sie die Erde erwärmt, hängt vom Winkel der Sonneneinstrahlung und damit vom Breitengrad ab. Weil die Sonne in der Nähe des Äquators das ganze Jahr über fast senkrecht steht, wird die Erde hier sehr stark aufgeheizt. In Richtung der Pole treffen die Sonnenstrahlen in einem immer flacheren Winkel auf: Die gleiche Sonnenenergie verteilt sich auf eine immer größere Fläche. Daher wird es umso kühler, je größer die Entfernung zum Äquator ist. So entstehen Regionen mit unterschiedlichem Klima, die Klimazonen.

In den Tropen brennt die Sonne stark
Quelle: Colourbox

Nach der Stärke der Sonneneinstrahlung lassen sich vier verschiedene Klimazonen auf dem Festland der Erde einteilen: Die Tropen rund um den Äquator, die Subtropen (vom lateinischen Wort „sub“ für „unter“) zwischen dem 23. und dem 40. Breitengrad, die gemäßigte Zone unserer Breiten und die Polargebiete um Nord- und Südpol. Wie Gürtel ziehen sie diese Klimazonen in Ost-West-Richtung um die Erde.

Polwärts wird die Sonnenenergie schwächer
Quelle: Colourbox

Das Klima hängt jedoch nicht nur vom Breitengrad ab, auch andere Einflüsse spielen eine Rolle. So liegt auf dem Kilimandscharo Schnee, obwohl er in den Tropen liegt. Dass sein Gipfel vereist ist liegt daran, dass die Temperatur mit zunehmender Höhe sinkt. Gebirgsklima ist also immer kühler als tiefer liegende Gebiete.

Schnee auf dem Kilimandscharo
Quelle: Colourbox

Auch die Entfernung zum Meer wirkt sich aufs Klima aus: Wasser kann Sonnenwärme länger speichern als das Festland. Außerdem wärmt es sich langsamer auf als das Land. Dadurch wirkt das Meerwasser wie ein Puffer auf die Temperaturen. In Küstennähe ist das Klima daher mild. Im Landesinneren fehlt dieser Wärmeausgleich und es herrscht kontinentales Klima, bei dem die Temperaturen viel stärker schwanken als im maritimen Klima in der Nähe des Meeres.

An den Küsten ist das Klima milder als weit im Landesinneren
Quelle: Colourbox

Meeresströmungen

Wie riesige Flüsse durchqueren Meeresströmungen alle fünf Ozeane. Sie transportieren gewaltige Wassermassen, ähnlich einem Förderband, rund um den Globus. Damit sorgen sie für einen Austausch von Wärme, Sauerstoff und Nährstoffen auf der ganzen Erde. Warmes Wasser vom Äquator strömt in Richtung der Pole, kaltes Wasser der Polargebiete sinkt zum Meeresboden und fließt zurück zum Äquator. Durch diesen Kreislauf werden die Temperaturen im Wasser und an Land ausgeglichen. Auch Eisberge, Schiffe oder Müll können durch die Strömung transportiert werden.

Auch Eisberge treiben mit den Meeresströmungen
Quelle: Colourbox

Angetrieben werden die Meeresströmungen durch den unterschiedlichen Salzgehalt und durch die unterschiedliche Temperatur von Meerwasser. Wo Meerwasser gefriert, wird Salz frei. Das Meerwasser unter einer Eisschicht ist darum besonders salzig – und gleichzeitig dichter und schwerer. Es sinkt nach unten und zieht weitere Wassermassen mit sich. In mehreren tausend Metern Tiefe fließt das Wasser zurück in wärmere Regionen. Dort steigt es wieder auf und der Kreislauf schließt sich.

Eiskaltes Meerwasser ist besonders salzhaltig und schwer
Quelle: Colourbox

An der Wasseroberfläche setzen zusätzlich Winde das Wasser in Bewegung. Der Wind verursacht eine Strömung an der Oberfläche. Diese Strömung bewegt sich nicht genau in Windrichtung, sondern wird durch die Coriolis-Kraft abgelenkt: Auf der Nordhalbkugel lenkt die Coriolis-Kraft das Wasser in Strömungsrichtung gesehen nach rechts, auf der Südhalbkugel nach links. Auch die Winde werden von der Corioliskraft beeinflusst.

Mit dem Abfluss in der Badewanne hat die Corioliskraft nur wenig zu tun. Auf diesen Wirbel wirken noch viele andere Kräfte.
Quelle: Colourbox

Durch die verschiedenen Einflüsse, wie Temperaturunterschiede des Wassers, Wind und die Coriolis-Kraft, entsteht an der Oberfläche und in der Tiefe der Ozeane ein Muster, das sich aus vielen einzelnen Strömungen zusammensetzt: Ein weltweiter Kreislauf, der auch das „globale Förderband“ genannt wird.