Vom Knochen zum Stein: Fossilien

Was wir über das Leben lange vergangener Zeiten wissen, haben wir zum großen Teil versteinerten Resten von Lebewesen zu verdanken: den Fossilien. Solche Fossilien entstehen dann, wenn Pflanzen oder Tiere nach ihrem Tod unter Sedimentschichten begraben werden. Die weichen Teile der Lebewesen zersetzen sich, harte Teile, wie Zähne, Knochen oder Schalen, bleiben erhalten. Wenn mächtige Gesteinsschichten auf diesen Überbleibseln lasten, werden sie unter dem wachsenden Druck langsam zu Gestein gepresst.

Fossiler Fisch
Quelle: Colourbox

In der oberen Gesteinsschicht liegen der Regel nach die jüngeren Fossilien. Je tiefer man in die Sedimentschichten vordringt, desto älter sind auch die Fossilien, die dort lagern. Sehr alte, aber dennoch häufig gefundene Fossilien sind zum Beispiel die Ammoniten. Das sind Überreste von Schalentieren, die vor Hunderten Millionen Jahren lebten und vor etwa 65 Millionen Jahren ausgestorben sind. Weil sie nur in einem begrenzten Zeitraum lebten, kann so in etwa das Alter des Gesteins bestimmt werden, in dem sie gefunden worden sind.

Ammoniten
Quelle: Colourbox
In den Alpen sind viele Fossilien begraben
Quelle: Colourbox

Um ein Fossil zu entdecken, muss man nicht unbedingt tief in der Erde bohren. Wenn sich im Lauf von Jahrmillionen die Gesteinsschichten heben, werden auch tiefer gelegene Schichten nach oben gedrückt und durch Abtragung freigelegt. So können Fossilien von den untersten Schichten des Meeresbodens, wie es in den Kalkalpen der Fall ist, bis auf hohe Berggipfel hinauf gelangen.

Aus Harz kann nach Jahrmillionen Bernstein werden
Quelle: Colourbox

Doch nicht nur in Gestein, auch im Harz von Bäumen werden Pflanzen und Tiere, wie Mücken oder Käfer, gefangen. Im Lauf langer Zeit verwandelt sich das klebrige Baumharz in festen Bernstein. In diesem gelblich-durchsichtigen Gestein sind Insekten oder Pflanzen, die vor Jahrmillionen lebten, noch heute sehr gut zu erkennen.

An der Ostseeküste kann man Bernstein finden
Quelle: Colourbox

Sedimentgesteine

Manche Felsen sehen aus, als wären sie gestreift. In den Dolomiten zum Beispiel sind solche quer verlaufenden Bänder oft deutlich zu sehen. Auch Sandstein- oder Kalksteinbrüche haben manchmal ähnlich hübsche Muster.

Schroffe Felswände in den Dolomiten
Quelle: Colourbox

Erzeugt wird das „Streifendesign“ schon bei der Bildung des Gesteins. Ausgangsmaterial ist Verwitterungsschutt, der von Wasser oder vom Wind davongetragen wird. Flüsse, Gletscher und Staubstürme verlieren irgendwann an Kraft: Flussläufe werden zur Mündung hin immer langsamer und strömen schließlich ins Meer oder einen See. Gletscher dringen in wärmere Regionen vor und schmelzen ab. Auch Staubstürme lassen irgendwann nach. Dann können sie Staub, Sand und Geröll nicht mehr weiter befördern. Das mitgeschleppte zermahlene Gestein setzt sich ab. Mit der Zeit bildet das abgelagerte Material eine immer höhere Schicht – das Sediment. Besonders auf dem Meeresboden und auf dem Grund von Seen, wo Flüsse viel Material anschwemmen, sammeln sich solche Sedimente, darunter auch Reste von toten Tieren oder Kalkschalen.

Die einzelnen Sedimentschichten erscheinen wie Streifen im Fels
Quelle: Colourbox

Nach und nach schichten sich verschiedene Sedimente übereinander. Eine Schicht kann zum Beispiel aus Sandstein bestehen: Zu Trockenzeiten hat hier der Wind Wüstensand angeweht. Steigt der Meeresspiegel wieder an, wird diese Schicht von Wasser bedeckt: Kalkschalen von Meerestieren sinken auf den Meeresgrund und lagern über dem Sand eine weitere Schicht an. Über Jahrmillionen veränderte sich das Klima immer wieder und sorgte dafür, dass der Meeresspiegel schwankte. Dadurch konnten sich verschiedene Schichten ablagern.

Am Meeresboden setzen sich Sand und Reste von Lebewesen ab
Quelle: Colourbox

Im Laufe der Zeit wird die Sedimentdecke immer dicker. Unter der Last des eigenen Gewichts werden die anfangs lockeren Sedimente immer stärker zusammengepresst, kleine Hohlräume verschwinden, die Masse verdichtet sich. Weitere Schichten lagern sich darüber, das Sediment wird immer fester und schließlich unter Druck zu Sedimentgestein. Dieser Vorgang heißt in der Geologie auch Diagenese. Werden dabei zum Beispiel Schalen winziger Meerestiere zu Stein gepresst, entsteht Kalkstein. Feine Sandkörner aus Quarz verkitten sich unter dem hohen Druck zu Sandstein.

Neben Geröll setzten sich auch tote Tiere ab, zum Beispiel Fische auf dem Meeresgrund. Luftdicht abgeschlossen blieben ihre Knochen und Schuppen erhalten und versteinerten. Solche Fossilien haben sich im Stein verewigt. Sie verraten noch nach Jahrmillionen vieles über die Zeit, in der sich das Sediment gebildet hat. Daher können Geologen in den Gesteinsschichten lesen wie in einem Geschichtsbuch.

Fossilien sind versteinerte Lebewesen
Quelle: Colourbox

Normalerweise ist für uns nur die oberste Schicht sichtbar. Wenn sich jedoch ein Fluss durch das Sedimentgestein gräbt, es bei der Gebirgsbildung angehoben oder in einem Steinbruch frei gesprengt wird, erhalten wir einen Blick auf den Querschnitt. Die einzelnen Sedimentschichten sind dann als „Streifen“ oder Bänder im Gestein gut zu erkennen.

Felsküste im Streifen-Look
Quelle: Colourbox

Kreislauf der Gesteine

Kein Gestein der Erde ist für die Ewigkeit gemacht. Es verwittert an der Oberfläche, wird abtransportiert und erneut abgelagert. Beim Zusammenstoß zweier Platten werden Sedimentschichten zusammengestaucht und zu Hochgebirgen aufgefaltet. Das Gestein abtauchender Platten schmilzt im Erdinneren und bildet die Quelle von Vulkanen. Lava, die ein Vulkankrater ausspuckt, kühlt wiederum ab und erstarrt wieder zu Gestein.

Gestein wird immer wieder umgewandelt
Quelle: Colourbox

Es ist ein ewiger Kreislauf, der dafür sorgt, dass selbst das härteste Gestein sich immer wieder verwandelt und neues daraus entsteht. Die Verwandlung geschieht natürlich nicht von heute auf morgen, sondern über Jahrmillionen. „Mitspieler“ dieses Kreislaufs sind drei Gruppen von Gestein, die jeweils unter anderen Bedingungen entstehen:

Heißes Magma kühlt ab zu magmatischem Gestein
Quelle: Colourbox

Wenn Magma abkühlt, erstarrt die heiße Masse zu magmatischem Gestein. Das kann sowohl an der Erdoberfläche als auch im Inneren der Erde geschehen. Wo sich dagegen Schichten von abgetragenem Gesteinsschutt anhäufen, werden die Sedimente unter der Last des eigenen Gewichts zusammengepresst. Durch diesen Druck verfestigen sie sich zu Sedimentgestein. Hoher Druck und große Hitze im Erdinneren wiederum sorgen dafür, dass sich Gestein verwandelt und ein anderes entsteht. Dann sprechen Geologen von Umwandlungs- oder von metamorphem Gestein.

Sedimentschichten werden erneut abgetragen
Quelle: Colourbox

Diese drei Gesteinstypen sind eng miteinander verbunden: Jeder Typ kann sich in jeden anderen verwandeln. Dieser Gesteinskreislauf wird immer weitergehen, so lange es die Erde gibt.

Marmor entsteht durch Erhitzen von Kalkstein im Erdinneren
Quelle: Colourbox

Was ist Gestein?

An manchen Stellen lugt es unter einer dünnen Pflanzendecke hervor, anderswo ragt es als steile Felswand in die Höhe: das nackte Gestein. Es ist das Baumaterial, aus dem Erdkruste und Erdmantel bestehen. Gestein ist jedoch keine einheitliche Masse. Ähnlich einem Kuchenteig – nur viel härter – ist es eine Mischung aus verschiedenen Zutaten: den Mineralen.

Wo keine Pflanzendecke ist, wird das Gestein sichtbar
Quelle: Colourbox

Gestein besteht also aus unterschiedlichen Mineralen. Je nach Zusammensetzung fügen sich die Minerale zu bestimmten Gesteinsarten zusammen. Granit zum Beispiel ist ein Gestein, das aus den Mineralen Feldspat, Quarz und Glimmer besteht. Dass Granit aus verschiedenen Mineralen aufgebaut ist, zeigt sich schon daran, dass er gesprenkelt ist: Er enthält hellere und dunklere Teile, die ihre unterschiedliche Farbe drei verschiedenen Mineralen verdanken. Die dunkleren Stellen stammen vom Mineral Glimmer. Weißlich bis grau erscheint häufig das Quarzmineral. Das dritte Mineral, der Feldspat, kann alle möglichen Farben annehmen, sogar rosa. Anders als das harte Granitgestein besteht der weichere Sandstein fast vollständig aus Quarz. Aus diesem Grund sieht Sandstein einheitlicher aus als der gesprenkelte Granit.

Pflaster aus Granitblöcken
Quelle: Colourbox

Fast alle Minerale ordnen sich nach einem bestimmten Gittermuster zu gleichmäßigen Formen, den Kristallen. So wächst das Mineral Steinsalz zum Beispiel zu einem Würfel. Durch die regelmäßige Anordnung ergeben sich aber auch andere Formen mit glatten Flächen, wie sie bei einem Bergkristall gut zu erkennen sind. Dieser besteht aus besonders reinem und daher durchsichtigem Quarz. Ist in den Quarz dagegen Flüssigkeit eingeschlossen, färbt er sich milchig trüb. Dann sprechen Geologen von einem Milchquarz.

Felsen aus Sandstein
Quelle: Colourbox
Das Mineralsalz wächst zu würfelförmigen Salzkristallen
Quelle: Colourbox

Vom Fels zum Sandkorn – Verwitterung

Der Norden von Kanada ist heute eine sanft gewellte Landschaft. Vor vielen Millionen Jahren stand hier jedoch ein Gebirge. Tatsächlich können sich im Lauf sehr langer Zeit selbst hohe Berge in kleine Hügel verwandeln.

Selbst aus schroffen Gebirgen können irgendwann sanfte Hügellandschaften werden
Quelle: Colourbox

Der Grund für diese Verwandlung: Das Gestein an der Erdoberfläche ist ständig Wind und Wetter ausgesetzt. Dringt zum Beispiel Wasser in Gesteinsritzen ein und gefriert, sprengt es den Stein auseinander. Diesen Vorgang nennt man Frostsprengung. Auch durch Temperaturwechsel zwischen Tag und Nacht und durch die Kraft von Wasser und Wind wird das Gestein mürbe. Mit anderen Worten: Es verwittert. Dieser Vorgang lässt sich auch an Gebäuden oder an Steinfiguren beobachten. Bei der Verwitterung zerfällt das Gestein in immer kleinere Bestandteile bis hin zu feinen Sand- und Staubkörnern. Verschiedene Gesteine verwittern unterschiedlich schnell: Granit ist zum Beispiel viel beständiger als der vergleichsweise lose Sandstein.

Wenn Wasser in die Ritzen eindringt, verwittert das Gestein
Quelle: Colourbox

Manche Gesteinsarten lösen sich sogar vollständig auf, wenn sie mit Wasser in Berührung kommen, zum Beispiel Steinsalz und Kalk. Steinsalz ist chemisch das Gleiche wie Kochsalz – und das löst sich ja bereits in gewöhnlichem Wasser auf. Kalk ist etwas beständiger, aber in säurehaltigem Wasser löst sich auch Kalkgestein auf. Säure entsteht zum Beispiel, wenn Regenwasser in der Luft mit dem Gas Kohlendioxid reagiert. Dieser „saure Regen“ greift das Kalkgestein an und löst es im Laufe der Zeit auf. An der Erdoberfläche hinterlässt die Verwitterung zerklüftete Kalkstein-Landschaften, unter der Erde entstehen Höhlen.

Steinsalz ist wasserlöslich
Quelle: Colourbox

Doch nicht nur Lösungsverwitterung, auch Hitze und Druck zermürben und zerbröseln Gestein unter der Erdoberfläche. Wo Pflanzen wachsen, da graben sich Wurzeln ein, sprengen das Gestein stückchenweise auseinander und sorgen ebenfalls dafür, dass es Millimeter für Millimeter abgetragen wird.

Am Kölner Dom nagt saurer Regen
Quelle: Colourbox

Die Verwitterung bearbeitet auf diese Weise nicht nur einzelne Felsen, sie nagt an ganzen Gebirgsketten. Bis der Schwarzwald so flach ist wie der Norden Kanadas dauert es aber noch ein paar Millionen Jahre.

Auch Wurzeln zerkleinern Gestein
Quelle: Colourbox

Die Erdzeitalter

Seit ihrer Entstehung hat sich die Erde stark verändert: Berge, Meere und Kontinente sind entstanden und vergangen, Tier- und Pflanzenarten haben sich ausgebreitet und sind ausgestorben. Die meisten dieser Veränderungen passierten sehr langsam, über viele Millionen Jahre hinweg. Aber ab und zu gab es einschneidende Ereignisse: Innerhalb weniger tausend Jahre änderten sich die Umweltbedingungen drastisch.

Äonen: Die großen Kapitel der Erdgeschichte
Quelle: SWR

Für die Wissenschaftler, die die Geschichte der Erde erforschen, sind diese drastischen Veränderungen wie ein neues Kapitel in einem Buch: Sie unterteilen die Erdgeschichte in verschiedene Abschnitte, die Äonen genannt werden.

Zu Beginn, vor 4,5 Milliarden Jahren war die Erde völlig unbewohnbar. Sie entstand als eine heiße Kugel aus glühendem geschmolzenem Gestein, umgeben von heißen, ätzenden und giftigen Gasen. Das klingt wie eine Beschreibung der Hölle – und vom griechischen Wort „Hades“ für Hölle stammt auch der Name dieser Zeit: Hadaikum. Es endete vor etwa vier Milliarden Jahren mit der ersten großen Veränderung: Die Erde war so weit abgekühlt, dass die Oberfläche fest wurde – die Erde bekam eine Kruste.

Im Hadaikum war die Erde eine Kugel aus flüssigem Gestein
Quelle: Colourbox

Die Erde kühlte weiter ab, so dass sich auf der Kruste flüssiges Wasser sammeln konnte: Meere entstanden. Und in diesen Meeren begann vor etwa 3,8 Milliarden Jahren das Leben – zunächst aber nur in Form einfachster Bakterien. Das griechische Wort für Ursprung oder Beginn steckt im Namen dieser Zeit: Archaikum. Eine wichtige Klimaveränderung vor etwa 2,5 Milliarden Jahren markierte den Übergang zur nächsten Epoche: Die primitiven Lebewesen begannen, die Umwelt zu beeinflussen. Sie produzierten Sauerstoff, der bislang in der Atmosphäre fast gar nicht vorkam.

Die frühen einzelligen Lebensformen wurden mit der Zeit komplexer, sie bildeten Zellkerne. Später begannen einige auch, dauerhaft in Verbünden zusammenzuarbeiten – daraus wurden schließlich die ersten mehrzelligen Organismen. Allerdings hatten sie noch keine festen Schalen oder Skelette, so dass aus dieser Zeit kaum Fossilien erhalten sind. Dieser Zeit vor dem Entstehen der Fossilien verdankt diese Epoche ihren Namen: Proterozoikum.

Das Proterozoikum endete vor 550 Millionen Jahren mit einer Explosion des Lebens: Innerhalb kurzer Zeit entwickelte sich aus den primitiven Lebensformen eine enorme Artenvielfalt. Diese Arten waren viel komplexer gebaut – und einige hatten auch schon harte Schalen, die erstmals als Fossilien erhalten blieben. Daher wird für die Wissenschaftler die Geschichte des Lebens erst ab diesem Zeitpunkt so richtig sichtbar. Und nach dem griechischen Begriff für „sichtbar“ ist auch diese Epoche bennant: Phanerozoikum.

Dieses Zeitalter des Lebens dauert seit 550 Millionen Jahren bis heute an. Allerdings verlief auch die Entwicklung des Lebens nicht gleichmäßig: Nach der explosionsartigen Ausbreitung des Lebens gab es zwei verheerende Massensterben. Diese markieren weitere wichtige Einschnitte in der Erdgeschichte, so dass Wissenschaftler das Zeitalter des Lebens, das Phanerozoikum in drei Abschnitte, Ären genannt, einteilen.

Die Abschnitte des Phanerozoikum
Quelle: SWR

Die älteste Ära des Phanerozoikum begann vor 550 Millionen Jahren mit der massenhaften Entstehung neuer Arten. Man nennt sie das Erdaltertum oder Paläozoikum. Zunächst spielte sich das Leben nur in den Ozeanen ab. Dann besiedelten die Pflanzen das Land, später zog auch die Tierwelt nach: Zuerst entwickelten sich die Amphibien, die sich bereits ein wenig an Land vortasten konnten, und schließlich auch Reptilien, die unabhängig vom Wasser wurden und das Land eroberten. Das Erdaltertum endete vor etwa 251 Millionen Jahren mit dem größten Massensterben aller Zeiten: Über 90 Prozent aller Tier- und Pflanzenarten starben aus, vor allem in den Meeren. Der Grund ist bis heute nicht endgültig geklärt. Wissenschaftler vermuten, dass eine Eiszeit schuld war, möglicherweise als Folge eines Meteoriteneinschlags.

Als sich die überlebenden Tier- und Pflanzenarten an ihre neue Umwelt gewöhnen mussten, brach das Erdmittelalter oder Mesozoikum an. Es ist vor allem das Zeitalter der Dinosaurier: Riesige Echsen entwickelten sich und beherrschten das Leben fast 200 Millionen Jahre lang. Doch auch das Erdmittelalter endete mit einem einschneidenden Ereignis: Vor etwa 65 Millionen Jahren schlug ein großer Meteorit auf der Erde ein. Dabei wurde so viel Staub und Asche in die Luft geschleudert, dass sich der Himmel verdunkelte und sich das Klima für lange Zeit veränderte. Die Dinosaurier und viele andere Arten starben aus.

Das Erdmittelalter war die Zeit der Dinosaurier, wie Stegosaurus ...
Quelle: Colourbox
... und Tyrannosaurus Rex.
Quelle: Colourbox

Davon profitierten vor allem kleine Säugetiere, die sich am besten an den Klimawandel anpassen konnten. Sie hatten sich bereits im Erdmittelalter entwickelt, waren aber im Schatten der Dinosaurier geblieben. Nun konnten sie sich rasant ausbreiten, die unterschiedlichsten Lebensräume erobern und sich immer weiter entwickeln. Auch der Mensch stammt von dieser Gruppe ab. Dieses jüngste Zeitalter hält bis heute an und wird daher auch die Erdneuzeit oder Känozoikum genannt.

Die Erdneuzeit gehört den Säugetieren
Quelle: Colourbox
Die Erdneuzeit gehört den Säugetieren
Quelle: Colourbox
Die Erdneuzeit gehört den Säugetieren
Quelle: Colourbox

Diese grobe Einteilung der Erdgeschichte orientiert sich an sehr einschneidenden Veränderungen des Lebens: Explosionsartige Vermehrung oder Massensterben. Dazwischen gab es aber weitere Umbrüche durch verschiedene andere Einflüsse – Veränderungen der Meere und Kontinente durch die Kontinentalverschiebung, Klimawandel zwischen Eis- und Warmzeiten, Zusammensetzung der Luft und vieles mehr. Immer bevorzugten die neuen Bedingungen einzelne Arten und benachteiligten andere. So können die drei Abschnitte des Phanerozoikum (Zeitalter des Lebens) noch jeweils in mehrere Perioden unterteilt werden.

Übersichtstabelle der Erdzeitalter
Quelle: SWR