Kontinente auf Wanderschaft

Lange Zeit dachte man, die Landmassen der Erde würden starr an Ort und Stelle stehen. Später stellte sich heraus: Das Gegenteil ist der Fall. Die Kontinente unseres Planeten bewegen sich! Wie gewaltige Eisschollen treiben sie in unterschiedliche Richtungen, wenn auch nicht sehr schnell. Ihre Geschwindigkeit entspricht etwa dem Wachstum eines Fingernagels. Doch woran liegt es, dass die Kontinente ständig auf Wanderschaft sind?

Auch wenn es nicht so aussieht: Die Kontinente bewegen sich
Quelle: Colourbox

Die Erdkruste, die unseren Planeten umhüllt, ist spröde und rissig. Sie ähnelt einer zersprungenen Eierschale und setzt sich aus sieben großen und vielen kleineren Platten zusammen. Einige von ihnen bilden die Kontinente, andere den Ozeanboden. Diese Platten der Erdkruste treiben auf einem heißen, zäh fließenden Gesteinsbrei umher und werden dabei von Bewegungen im Erdinneren angetrieben, genauer gesagt: von Strömungen des Erdmantels. Fachleute sagen auch: Sie driften. All diese Vorgänge rund um die Bewegung der Erdplatten heißen Plattentektonik, die Bewegung selbst auch Plattendrift.

Die Erdkruste ist zersprungen wie eine Eierschale
Quelle: Colourbox

Dort, wo die einzelnen Platten aneinander grenzen, ist die Erde besonders aktiv. An einigen dieser Plattengrenzen dringt heißes Gestein aus dem Erdmantel nach oben und kühlt sich ab. Hier bildet sich neue Erdkruste: die beiden Platten wachsen und werden dadurch auseinandergedrückt. Dort dagegen, wo zwei Platten aufeinander prallen, wird die leichtere von ihnen – die kontinentale Kruste – zusammengeknautscht und zu Gebirgen aufgefaltet. Die schwerere der beiden – die ozeanische Kruste – verschwindet dagegen langsam in der Tiefe. Durch die Hitze im Erdinneren wird ihr Gestein wieder aufgeschmolzen. Während die Kante der Platte in der Tiefe versinkt, zieht sie den Rest der Platte hinter sich her und treibt so die Plattenbewegung zusätzlich an.

Aufgefaltete Erdkruste: Die Alpen
Quelle: Colourbox

Entlang solcher Plattenränder häufen sich Vulkanausbrüche, Erdbeben, lange Gebirgsketten und tiefe Ozeangräben. Die meiste Unruhe an der Erdoberfläche bringt die größte ihrer Platten mit sich: Es ist die Pazifische Platte, die mit einer Geschwindigkeit von etwa 10 Zentimetern pro Jahr nach Nordwesten rückt. An ihren Rändern finden sich die meisten aktiven Vulkane der Erde, heftige Erdbeben erschüttern die Region. Wegen der häufigen Vulkanausbrüche und Beben heißt diese Plattengrenze auch der „Pazifische Feuerring“.

Spektakel am Plattenrand: Ein Vulkan spuckt Feuer
Quelle: Colourbox

Wo Platten zusammenstoßen

Wenn zwei Fahrzeuge aufeinanderprallen, wird ihr Blech zusammengeknautscht. Ähnliches geschieht, wenn zwei Platten der Erdkruste zusammenstoßen. Dann wird ihr Gestein zusammengeschoben und ganz langsam in gewaltige Falten gelegt – so entstehen Faltengebirge. Was beim Autounfall die Knautschzone, ist bei der Kollision von Platten das Gebirge – nur dass ein Autounfall in Sekundenbruchteilen abläuft, eine Plattenkollision dagegen über viele Millionen Jahre.

Verformt durch den Aufprall: die Motorhaube
Quelle: Colourbox

Genauso sind die Alpen entstanden: Afrika drückte gegen den Eurasischen Kontinent und faltete das Gebirge auf. Auch der Himalaya in Asien oder die Anden in Südamerika verdanken ihre Herkunft dem Zusammenstoß von wandernden Erdkrustenplatten.

Schöne Knautschzone: die Alpen
Quelle: Colourbox

Bei einem solchen Crash schiebt sich das Gestein der leichteren Platte nach oben, die schwerere versinkt in der Tiefe. Dieser Vorgang heißt Subduktion, der Bereich, in dem die Platte abtaucht, Subduktionszone. Entlang dieser Zonen liegen oft tiefe Rinnen, weshalb sie gut zu erkennen sind. Die tiefste von ihnen ist der Marianengraben im Pazifischen Ozean. Diese Tiefseerinne liegt dort, wo die Pazifische Platte unter die Philippinische taucht.

Je weiter die Erdkrustenplatte im Erdinneren verschwindet, desto heißer wird es. Das Gestein schmilzt und in der Tiefe bildet sich Magma. Durch den wachsenden Druck kann es wieder nach oben gepresst werden. Wo es bis an die Erdoberfläche dringt, spucken Vulkane Lava und Asche. Ganze Ketten solcher Vulkane gibt es rund um die Pazifische Platte, zum Beispiel auf Indonesien. Weil sich hier ein Vulkan an den anderen reiht, heißt diese Plattengrenze auch „Pazifischer Feuerring“.

Ganze Ketten von Vulkanen reihen sich um den Pazifischen Feuerring wie hier auf Bali
Quelle: Colourbox

An solchen Plattenrändern brechen nicht nur Vulkane aus. Häufig bebt auch die Erde, weil die Plattenbewegung für ungeheuren Druck und wachsende Spannungen sorgt. Sobald diese sich entladen, erschüttern Beben die Erdoberfläche. In Japan zum Beispiel treffen gleich drei Platten aufeinander: die Pazifische, die Philippinische und die Eurasische. Aus diesem Grund wird Japan so oft von heftigen Erdbeben heimgesucht.

Japan ist besonders von Erdbeben bedroht
Quelle: Colourbox

Wo Platten auseinander weichen

Ein langer tiefer Riss klafft in der Erde und wird immer breiter. Gewaltige Kräfte reißen die Erdoberfläche in Stücke: Entlang dieser Bruchstelle zieht sich der Ostafrikanische Graben durch den Kontinent. Schon vor 20 Millionen Jahren begann hier Afrika auseinanderzubrechen. Heißes Magma aus dem Erdinneren drückte nach oben und riss die Erdkruste auseinander. Seitdem driften die Krustenstücke auseinander, jedes Jahr um etwa einen Zentimeter. Dass die Erde hier sehr aktiv ist, kann man auch an den vielen Vulkanen erkennen, die sich entlang des Grabens erheben. Sollte irgendwann Meerwasser eindringen, wird aus dem Ostafrikanischen Graben ein Ozean werden. Ähnliches geschah am Roten Meer. Dort trennt sich seit 25 Millionen Jahren die Afrikanische von der Asiatischen Kontinentalplatte. Der entstandene Riss wurde von Meerwasser überflutet.

Der Kilimandscharo ist nur einer der vielen Vulkane im Ostafrikanischen Graben
Quelle: Colourbox

Dort, wo kontinentale Kruste auseinanderbricht, entsteht ein Grabenbruch. Wo sich dagegen ozeanische Krustenstücke voneinander wegbewegen, wachsen am Meeresboden Gebirge: die Mittelozeanischen Rücken. Sie bestehen aus Magma, das aus dem Erdmantel durch die ozeanische Kruste nach oben dringt. Hier wird neues Plattenmaterial gebildet. Es drängelt sich sozusagen zwischen zwei ozeanische Platten und erstarrt zu Basaltgestein, das sich immer weiter auftürmt.

Riss in der Erdkruste: das Rote Meer
Quelle: Colourbox

An manchen Stellen ragen die Mittelozeanischen Rücken als Inseln über den Meeresspiegel hinaus. Island zum Beispiel und die noch junge isländische Insel Surtsey sind nichts anderes als Teile des Mittelatlantischen Rückens. Durch den Nachschub aus erstarrtem Gestein bekommt die ozeanische Kruste hier ständig Zuwachs. Sie wächst dabei nicht nur in die Höhe, sondern auch zu den Seiten. Die beiden ozeanischen Platten werden nach außen gedrückt. Weil sie sich dabei auseinanderspreizen, spricht man auch von einer Divergenzzone.

Island ist Teil des Mittelatlantischen Rückens
Quelle: Colourbox

Auf diese Weise entsteht neuer Meeresboden und der Ozean wird langsam breiter – allerdings nur wenige Zentimeter im Jahr. Aber moderne Satelliten können die Kontinente millimetergenau vermessen. Aus der Bewegung kann man errechnen, dass der Atlantik seit Kolumbus Überfahrt im Jahr 1492 schon um 25 Meter breiter wurde.

Der Atlantik wächst jedes Jahr mehr als 2 Zentimeter
Quelle: Colourbox

Aber weil die Erde insgesamt ja nicht größer wird, muss der Zuwachs an Meeresboden an anderer Stelle wieder ausgeglichen werden. Das passiert dort, wo ozeanische Kruste unter kontinentaler Kruste abtaucht: Während der Atlantik immer weiter wächst, versinkt der Pazifik langsam unter den Plattenrändern Amerikas und Ostasiens.

Wo Platten aneinander vorbei schrammen

Die Einwohner von San Francisco und Los Angeles leben auf einem Pulverfass: Jeden Moment kann ein Erdbeben die Küste Kaliforniens erschüttern. Viele Beben hat die Region bereits mitgemacht, eines davon war besonders verheerend. Am 18. April 1906 zitterte die Erde so stark, dass ganze Viertel San Franciscos einstürzten und rund 3000 Menschen ums Leben kamen. Doch warum ist gerade an der Westküste der USA die Erdbebengefahr so groß?

Die Golden Gate Bridge in Kalifornien steht auf wackligem Grund
Quelle: Colourbox

Entlang der kalifornischen Küste bewegen sich zwei Platten der Erdkruste aneinander vorbei: die Nordamerikanische und die Pazifische Platte. Beide driften nach Nordwesten, allerdings ist die Pazifische Platte etwas schneller. Sie „überholt“ darum langsam die Nordamerikanische Platte. So kommt es, dass Los Angeles und San Francisco einander immer näher rücken, jedes Jahr um etwa 6 Zentimeter. Wenn sie sich im gleichen Tempo fortbewegen, wird in rund 12 Millionen Jahren Los Angeles auf der Pazifischen Platte nördlich von San Francisco liegen, das sich auf der Nordamerikanischen befindet.

Millionen-Metropole Los Angeles
Quelle: Colourbox

Dort wo die Platten aneinandergrenzen, zieht sich gut sichtbar ein langer Riss durch das Land. Dieser San-Andreas-Graben ist über 1100 Kilometer lang. Hier verursacht die unterschiedliche Geschwindigkeit der Erdplatten extrem starke Spannungen im Gestein. Denn die beiden Platten gleiten nicht einfach aneinander vorbei, sondern sie verhaken sich ineinander. Irgendwann ist die Spannung zwischen den Felsmassen so groß, dass sich die schnellere Pazifische Platte mit einem Ruck vorwärts bewegt. Solche ruckartigen Bewegungen der Platte äußern sich in mehr oder weniger starken Erdbeben. Aus diesem Grund wird Kalifornien immer wieder von Erdstößen erschüttert werden. Einige Forscher behaupten sogar, ein gewaltiges Beben stünde schon in wenigen Jahren bevor. Doch wann genau das sein wird, kann bisher niemand vorhersagen.

Hollywood rückt San Francisco immer näher
Quelle: Colourbox
Droht San Francisco schon bald ein Erdbeben?
Quelle: Colourbox

Der Superkontinent Pangäa

Wer eine Weltkarte etwas genauer betrachtet, stellt fest: Die Formen von Afrika passen zu Nord- und Südamerika fast so gut wie Teile eines Puzzles. Und tatsächlich sind die Kontinente so etwas Ähnliches wie auseinandergeschobene Puzzleteile. Nur ergeben sie zusammengefügt kein Bild, sondern einen einzigen großen Kontinent: Pangäa.

Welche Teile passen zusammen?
Quelle: Colourbox

Pangäa existierte vor ungefähr 250 Millionen Jahren. In diesem Superkontinent waren alle Landmassen der Erde zusammengefasst und von einem einzigen Meer umgeben, Panthalassa genannt. Etwa vor 200 Millionen Jahren zerfiel Pangäa in zwei Teile – in Laurasia im Norden und Gondwana im Süden. Die beiden Kontinente zerbrachen später in noch kleinere Stücke. Danach waren Nord- und Südamerika, Afrika, Asien und Europa schon etwa in ihrer heutigen Form zu erkennen. Allerdings lagen diese Erdteile damals noch viel näher beisammen als heute. Erst im Lauf der Zeit entfernten sie sich immer mehr voneinander, denn zwischen Amerika im Westen und Afrika und Eurasien im Osten war ein Mittelozeanischer Rücken aufgebrochen. Ein neuer Ozean entstand: Der Atlantik, der bis heute weiter wächst. Nord- und Südamerika entfernen sich deshalb von Europa und Afrika jedes Jahr um ein paar Zentimeter.

Der Meeresboden des Atlantik drückt Europa und Nordamerika auseinander
Quelle: Colourbox

Motor für die Reise der Erdteile und die Entstehung von Ozeanen sind Strömungen im heißen Erdinneren. Diese setzen die Platten ganz langsam in Bewegung. Zum Teil weichen oder brechen die Platten dadurch auseinander, an anderer Stelle driften sie wieder aufeinander zu.

Die Gebirge Schottlands und Nordamerikas hingen einst zusammen
Quelle: Colourbox

Doch nicht nur die Form der Erdteile erzählt davon, wie sie einst zusammenhingen. Auch Gebirgszüge weisen darauf hin, wo Erdteile vor langer Zeit eins waren. So sind die Appalachen im Nordosten Amerikas Teil einer Bergkette, die sich über Grönland und Schottland bis nach Norwegen zieht. Getrennt wurde das Gebirge durch den Nordatlantik, der sich im Laufe der Zeit dazwischen geschoben hat. Diese Gebirgskette, die vor Jahrmillionen zusammenhing, lässt sich auf einer Weltkarte noch gut erkennen.

Auch Berge Norwegens gehörten zu diesem Gebirgszug
Quelle: Colourbox

Berge in Bewegung

Mächtig und starr ragen Gebirge in die Höhe. Es scheint als könne nichts und niemand sie vom Fleck bewegen. Doch das stimmt nicht: Gebirge sind ständig in Bewegung – allerdings so langsam, dass wir die Veränderung mit bloßem Auge nicht sehen können.

Schnee am Kilimandscharo
Quelle: Colourbox

Der Grund dafür: Die Platten der Erdkruste bewegen sich. Und wenn zwei dieser Platten zusammenstoßen, wird das Gestein gestaucht, geschoben und aufgetürmt. Ähnlich wie bei einem Autounfall falten sich beim Aufprall an den Plattenrändern Gebirge auf. Berge und Täler sind also eine „Knautschzone“ der aufeinanderprallenden Platten. Allerdings passiert das nicht schlagartig wie bei einem Autounfall, sondern noch viel langsamer als in Zeitlupe. Das Ergebnis sind Faltengebirge wie die Anden in Südamerika. Dort gleitet die ozeanische Nazca-Platte unter die Südamerikanische Platte und quetscht das Gestein mit unglaublicher Kraft zusammen. Dabei türmt sich das langgezogene Gebirge der Anden auf, das über eine Strecke von 7500 Kilometer reicht. Die Anden sind damit die längste überirdische Gebirgskette der Welt.

Wie bei einem Crash schieben sich die Platten zusammen
Quelle: Colourbox
Die Anden sind wie die Alpen ein Faltengebirge
Quelle: Colourbox

Es gibt allerdings auch gewaltige Gebirge unter dem Meeresspiegel. Sie ziehen sich mitten durch die Ozeane. Auch sie verdanken ihr Dasein den beweglichen Platten. Dort wo sich am Meeresgrund zwei Platten voneinander weg bewegen, dringt Magma aus dem Mantel durch die ozeanische Kruste. Der heiße Gesteinsbrei erkaltet am Meeresboden und türmt sich zu Gebirgen, die Tausende von Metern lang sind: die Mittelozeanischen Rücken. Dort, wo die Lava den Meeresspiegel erreicht und darüber hinaus quillt, entstehen Inseln wie Island. Diese Gebirge, die im Meer geboren werden, sind die längsten der Erde. Der Mittelatlantische Rücken zieht sich von Nord nach Süd durch den ganzen Antlantik – etwa 20.000 Kilometer lang.

Island ist Teil des Mittelatlantischen Rückens
Quelle: Colourbox
Geysir auf Island
Quelle: Colourbox

Wenn die Erde bebt

Die Erde zittert, Risse klaffen im Erdboden, Bäume schwanken und Häuser stürzen ein – Erdbeben sind Naturgewalten mit zerstörerischer Kraft. Wenn die Erde bebt, können ganze Stadtteile in sich zusammenfallen. In bestimmten Gebieten bebt die Erde besonders oft, nämlich dort, wo die Platten der Erdkruste aneinandergrenzen. Das ist zum Beispiel in Japan, an der Westküste der USA oder im Mittelmeerraum der Fall.

Die Ursache von Erdbeben ist die Bewegung der Platten. Diese schwimmen auf dem zähflüssigen Material des Erdmantels, dessen Strömungen sie antreiben wie ein Motor. Dort, wo zwei Platten aneinander grenzen, können sich ihre Gesteinsmassen verhaken und ins Stocken geraten. Das Problem ist: Die Strömung im Erdinneren treibt sie weiter an. Dadurch entstehen enorme Spannungen zwischen den beiden Platten. Werden die Spannungen irgendwann zu groß, bewegt sich eine der Platten ruckartig vorwärts. Die Spannung entlädt sich: die Erde bebt.

Japan ist von Erdbeben besonders stark bedroht
Quelle: Colourbox

Häufig geschehen Erdbeben dort, wo zwei Platten mit unterschiedlicher Geschwindigkeit aneinander vorbeigleiten, wie an der Küste Kaliforniens. Wo Platten aufeinander stoßen geht das ebenfalls nicht reibungslos ab. So driftet zum Beispiel die Afrikanische auf die Eurasische Platte zu und taucht dabei unter diese ab. Weil diese Plattengrenze im Mittelmeerraum verläuft, bebt in Italien oder in der Türkei immer wieder die Erde. Auch dort, wo die Erdkruste auseinander gezerrt wird, gibt es Erdstöße, zum Beispiel im Oberrheingraben. Diese waren in den vergangenen Jahrhunderten zwar weniger stark, doch auch hier gab es schon heftige Erschütterungen: Im Jahr 1356 richtete ein starkes Beben großen Schaden in der Stadt Basel an.

Von Erdbeben zerstörtes Gebäude
Quelle: Colourbox

Nicht jedes Mal ist die Bewegung der Platten „schuld“ an einem Erdbeben. Auch Einstürze können die Umgebung erschüttern. Das geschieht dann, wenn natürliche oder vom Menschen geschaffene Hohlräume einbrechen. Solche Beben reichen aber nicht so weit und sind nicht so stark wie Beben, die von der Bewegung der Erdplatten ausgelöst wurden.

Die Küste von Kalifornien ist Erdbebengebiet
Quelle: Colourbox

Der genaue Punkt, von dem ein Erdbeben ausgeht, ist der Erdbebenherd, auch Hypozentrum genannt. Von hier aus breiten sich die Erdbebenwellen in alle Richtungen aus – vergleichbar den Wellen, nachdem ein Stein ins Wasser geplumpst ist. Je größer die Entfernung vom Erdbebenherd, desto schwächer werden die Erdbebenwellen, die die Erde zum schwanken bringen.

Auch in Chile bebt häufig die Erde
Quelle: Colourbox

Direkt über dem Herd oder Hypozentrum liegt an der Erdoberfläche das Epizentrum. Rund um dieses Epizentrum sind die Zerstörungen eines Erdbebens meist am größten. Wie stark ein Beben ist, lässt sich mit speziellen Geräten messen. Meist wird die Stärke mit Werten auf der nach oben offenen Richterskala angegeben. Das stärkste bisher gemessene Erdbeben war das von Valdivia am 22. Mai 1960, auch Großes Chile-Erdbeben genannt. Es erreichte eine Stärke von 9,5 auf der Richterskala.

Wo auf der Erde gibt es Vulkane?

Nicht überall auf der Erde gibt es Vulkane, sie sind ganz ungleichmäßig verteilt. Die allermeisten von ihnen liegen entlang der Plattengrenzen – dort, wo Erdplatten aneinander reiben, wo eine Platte unter die andere taucht oder wo sie auseinander treiben. An diesen Bruchstellen kann heißes Magma aus dem Erdinneren an die Oberfläche quellen.

Plattengrenzen und Vulkane
Quelle: NASA/GSFC/SVS

Besonders viele aktive Vulkane findet man rund um den pazifischen Ozean, zum Beispiel den Mount St. Helens in den USA, den Popocatepetl in Mexico und den Bezymianny in Russland. Sie alle sind Teil einer etwa 40.000 Kilometer langen Kette von Vulkanen, dem Pazifischen Feuerring. Denn rings um den Pazifik schiebt sich die pazifische Platte unter andere Platten. Beim Abtauchen der pazifischen Platte wird die Erdkruste aufgeschmolzen. An diesen Stellen sammelt sich Magma und darüber bilden sich Vulkane.

Vulkane gibt es nicht nur über, sondern auch unter dem Meeresspiegel – und die meisten sind uns noch völlig unbekannt. Diese Unterwasser-Vulkane heißen „Seamounts“, Seeberge. Zu ihnen gehören die Vulkane des Mittelatlantischen Rückens, einem riesigen Unterwassergebirge im Atlantik. Dort driften Platten auseinander und daher steigt dort ständig Magma nach oben. Manchmal erreichen die Vulkane auch die Meeresoberfläche: 1963 ist südlich von Island eine neue Vulkaninsel – Surtsey – innerhalb weniger Monate aus dem Meer gewachsen. Auch Island selbst entstand durch Vulkanismus am Mittelatlantischen Rücken.

Ganz anders verhält es sich mit den Vulkanen auf Hawaii: Diese liegen weit entfernt von Plattengrenzen, mitten auf der Pazifischen Platte. Aber unterhalb von Hawaii ist der Erdmantel besonders heiß, man nennt das einen „Hotspot“, eine heiße Stelle im Erdmantel. Hier steigt heißes Magma nach oben und kann leicht durch die Kruste brechen – dann entsteht ein Vulkan. Wenn eine Platte der Erdkruste über einen festen Hotspot hinweg gleitet, bohrt sich immer wieder ein neuer Vulkan durch die Kruste. So entsteht eine ganze Kette von Vulkanen, wie zum Beispiel die Inselkette von Hawaii. Dort ist im Moment der Vulkan Kilauea aktiv, weil er zurzeit über dem Hotspot liegt.

Was passiert im Erdinneren?

Die Lavalampe – Kult aus den 70ern: In einer zähen Flüssigkeit steigen dicke Blasen langsam auf, sinken wieder zu Boden und blubbern erneut nach oben. Eine ähnliche Kreisbewegung von heißem, zähflüssigem Gestein findet auch direkt unter unseren Füßen im Erdinneren statt. Was ist aber die Ursache dafür?

Lavalampe
Quelle: imago stock&people

Egal ob Lavalampe, Wasser im Kochtopf oder Erdmantel, der Grund ist immer gleich: Wenn eine Flüssigkeit erwärmt wird, steigen warme Blasen nach oben. Das liegt daran, dass die winzigen Teilchen, aus denen sie besteht, sich bei zunehmender Temperatur immer stärker hin und her bewegen. Dafür brauchen sie mehr Platz und drängeln sich nicht mehr so eng zusammen. Im gleichen Volumen sind jetzt weniger Teilchen als in der Umgebung, es ist also leichter und steigt nach oben. Dort kühlt diese Blase wieder ab und die Teilchen brauchen weniger Platz. Das Volumenstück wird schwerer als die Umgebung, sinkt wieder ab und der Kreislauf beginnt von vorne. Wenn eine Flüssigkeit wegen eines Temperaturunterschieds im Kreis fließt, spricht man auch von Konvektion.

Bei einer Lavalampe bringt die Wärme der Lampe die Flüssigkeit in Bewegung. Im Erdinneren ist der heiße, feste innere Erdkern die Wärmequelle. Er erwärmt das darüber liegende flüssige Metall des äußeren Erdkerns. Dieses steigt nach oben und gibt seine Wärme an den Erdmantel weiter, wodurch es allmählich abkühlt. Dann sinkt es wieder nach unten, wo es sich erneut erhitzt.

Ein zweiter, ähnlicher Kreislauf findet im Erdmantel statt: Sein aufgeheiztes Gestein bewegt sich vom Kern nach oben in Richtung Erdkruste, an die es wiederum Wärme abgibt. Nachdem es sich abgekühlt hat, fließt es abwärts zum Erdkern, wo der Kreislauf erneut beginnt. Weil das Erdmantelgestein sehr zäh ist, bewegt es sich die Konvektionsströmung nur wenige Zentimeter pro Jahr – so dauert ein Kreislauf eine lange Zeit.

Durch die Gesteinsströme im Erdinneren wirken große Hitze und Druck auf die dünne Erdkruste. Nicht immer kann sie dem Stand halten: Ab und zu reißt sie an einzelnen Stellen auf und heißes Erdgestein entweicht durch Vulkane an die Erdoberfläche.

Warum sieht es auf der Erde anders aus als auf dem Mond?

Auf dem Mond sieht es nicht sehr einladend aus: Die Oberfläche ist trocken und mit einer grauen Staubschicht überzogen. Meteoriteneinschläge haben riesige Krater in den Boden gerissen, die sich mit Lava aus dem Inneren des Mondes füllten. Rund um diese Lavabecken türmen sich kilometerhohe Kraterränder als Gebirgsringe auf.

Mond mit sichtbaren Kratern
Quelle: Colourbox

Völlig anders unser blauer Planet – schon weil er zu drei Vierteln von Wasser bedeckt ist. Das Wasser bedeckt aber nicht nur einen Großteil der Erde, es formt auch ihre Landmasse: Flüsse, Gletscher und die Brandung des Meeres bearbeiten das Gestein, zerkleinern es und räumen es um. So entstehen Täler, Küsten und immer wieder neue Gesteinsschichten.

Erde, Sonne, Wolken
Quelle: Colourbox

Das Innere des Mondes ist heute fest und starr. Die Erde dagegen hat einen flüssigen Erdmantel, auf dem bewegliche Platten schwimmen. Die Bewegung der Erdplatten bewirkt, dass sich Gebirge auffalten, Tiefseegräben entstehen und Vulkane Feuer und Asche spucken.

Typisch für die Erde: Gebirge mit Tälern
Quelle: Colourbox

Anders als der Mond besitzt die Erde eine Lufthülle, die Atmosphäre. In dieser Lufthülle entsteht das Wetter. Wind, Regen und Schnee haben die Erdoberfläche über Jahrmillionen bearbeitet und geformt. Außerdem wirkt die Atmosphäre als Schutzschild, der Meteoriten bremst und verglühen lässt.

Dieser Fußabdruck wird noch lange auf dem Mond zu sehen sein.
Quelle: imago stock&people

Weil der Mond keine solche Atmosphäre hat, schlagen Meteoriten auf seiner Oberfläche ungebremst ein und zerbröseln das Gestein schlagartig zu Staub. Doch Meteoriten sind die einzigen Kräfte, die die Mondlandschaft formen. Weil es kein Wasser, keine Atmosphäre und keine Plattentektonik gibt, fehlen die Einflüsse, die unsere Erdoberfläche so abwechslungsreich gestalten.

Die ersten Menschen, die karge Mondlandschaft betraten, waren der Astronaut Neil Armstrong und sein Kollege Edwin E. Aldrin. Die Fußabdrücke, die sie bei ihrer Mondlandung im Jahr 1969 hinterlassen haben, sind bis heute zu sehen – weil auf dem Mond weder Wind noch Wasser die Spuren verwischen.

Ozeanische und kontinentale Kruste

Nicht überall ist die Erdkruste gleich aufgebaut. Die Landmassen der Erde bestehen aus kontinentaler, der Meeresboden aus ozeanischer Kruste. Einer der Unterschiede ist, dass die kontinentale Kruste neben Sauerstoff vor allem Silizium und Aluminium enthält. Die ozeanische Kruste hat dagegen auch einen hohen Anteil an Magnesium. Doch das ist lange nicht der einzige Unterschied:

Bei einem Vulkanausbruch wird neue Erdkruste gebildet
Quelle: Colourbox

Ozeanische Kruste bildet sich am Meeresgrund, wo entlang der mittelozeanischen Rücken Magma aufsteigt und erstarrt. Da hier ständig Kruste nachwächst, werden die beiden Lithosphären-Platten nach außen gedrückt. In Richtung der Küsten wird die ozeanische Kruste also immer älter. Einige der ältesten Stücke sind um die 200 Millionen Jahre alt. Sie liegen im Atlantik vor Nordamerika und östlich des Marianengrabens im Pazifik. Noch älter wird die etwa fünf bis acht Kilometer dicke ozeanische Kruste aber nicht: Weil sie schwerer ist als die kontinentale, taucht sie beim Zusammenstoß ab und wird im Erdinneren wieder aufgeschmolzen.

Die Färöer Inseln ragen als Teil der ozeanischen Kruste über den Meeresspiegel hinaus
Quelle: Colourbox

Die kontinentale Kruste ist zwar leichter, aber dafür dicker als die ozeanische Kruste: Im Durchschnitt reicht sie 40 Kilometer, unter Gebirgen sogar bis zu 80 Kilometer in die Tiefe. Wann genau sie sich gebildet hat, ist selbst der Wissenschaft noch ein Rätsel. Hinweise darauf gibt das älteste bisher bekannte Gestein auf der Erde: Es wurde in Nordkanada gefunden, ist über vier Milliarden Jahre alt und vermutlich ein Rest der allerersten Erdkruste.

Der Meeresboden an der Küste besteht noch aus kontinentaler Kruste
Quelle: Colourbox

Die äußerste Hülle der Erde

Wie ein Ei von der Eierschale ist auch die Erde von einer harten Hülle umgeben. Diese äußerste Schicht umgibt den Erdmantel und wird Erdkruste genannt. Vergleicht man die Erde mit einem Pfirsich, ist die Erdkruste – relativ gesehen – so dick wie seine Haut. Unter Kontinenten reicht sie durchschnittlich 40 Kilometer in die Tiefe, unter den Ozeanen sogar nur etwa sieben Kilometer.

Die Erdkruste ist im Verhältnis zur Erde so dick wie die Pfirsichhaut zum Pfirsich
Quelle: Colourbox

Darunter liegt der äußere Teil des Erdmantels, der bis in etwa 100 Kilometer Tiefe reicht. Er ist ebenfalls fest, besteht aber aus schwererem Gestein. Die Erdkruste und dieser äußerste Teil des Mantels zusammen werden auch „Lithosphäre“ genannt. Diese feste Gesteinsschicht ist in verschieden große Platten zerbrochen, die ganz langsam auf dem heißen, zäh fließenden Erdmantel umher treiben.

Island liegt auf dem mittelatlantischen Rücken, wo die Lithosphärenplatten auseinanderklaffen
Quelle: Colourbox

Wo die Gesteinsschmelze aus dem heißen Erdmantel nach oben dringt, kann die Erdkruste aufbrechen. Dann strömt Lava heraus, die zu neuer Erdkruste wird. Hauptsächlich geschieht das dort, wo die Platten der Lithosphäre aneinander grenzen, wie an den mittelozeanischen Rücken.

Die Alpen – Hochgebirge am Plattenrand
Quelle: Colourbox

In Island zum Beispiel sind diese Plattengrenzen gut zu erkennen: Risse und Furchen ziehen sich hier durch die Erdkruste, wo eurasische und nordamerikanische Platte voneinander wegdriften. Im Mittelmeerraum liegt ebenfalls eine Plattengrenze. Weil hier die Afrikanische gegen die Eurasische Platte drückt, gibt es in Italien viele Vulkane und immer wieder Erdbeben.

Die Liparischen Inseln – eine Vulkankette in Italien
Quelle: Colourbox

Die Kruste wird vom Boden bedeckt. Der Boden der Landmassen bildet sich aus verwittertem Gestein und Überresten von Tieren und Pflanzen. Der Meeresboden dagegen entwickelt sich aus Ablagerungen wie Ton und abgesunkenen Resten von Meeresorganismen. An den Küsten besteht der Meeresboden zusätzlich aus abgelagertem Geröll, das vom Festland abgetragen und ins Meer geschwemmt wurde.